Tractable Objectives for Robust Policy Optimization

نویسندگان

  • Katherine Chen
  • Michael H. Bowling
چکیده

Robust policy optimization acknowledges that risk-aversion plays a vital role in real-world decision-making. When faced with uncertainty about the effects of actions, the policy that maximizes expected utility over the unknown parameters of the system may also carry with it a risk of intolerably poor performance. One might prefer to accept lower utility in expectation in order to avoid, or reduce the likelihood of, unacceptable levels of utility under harmful parameter realizations. In this paper, we take a Bayesian approach to parameter uncertainty, but unlike other methods avoid making any distributional assumptions about the form of this uncertainty. Instead we focus on identifying optimization objectives for which solutions can be efficiently approximated. We introduce percentile measures: a very general class of objectives for robust policy optimization, which encompasses most existing approaches, including ones known to be intractable. We then introduce a broad subclass of this family for which robust policies can be approximated efficiently. Finally, we frame these objectives in the context of a two-player, zero-sum, extensive-form game and employ a no-regret algorithm to approximate an optimal policy, with computation only polynomial in the number of states and actions of the MDP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Event-driven and Attribute-driven Robustness

Over five decades have passed since the first wave of robust optimization studies conducted by Soyster and Falk. It is outstanding that real-life applications of robust optimization are still swept aside; there is much more potential for investigating the exact nature of uncertainties to obtain intelligent robust models. For this purpose, in this study, we investigate a more refined description...

متن کامل

A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides

We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which in turn leads to a class...

متن کامل

Robust Fluid Control of Multiclass Queueing Networks

This thesis applies recent advances in the field of robust optimization to the optimal control of multiclass queueing networks. We develop models that take into account the uncertainty of interarrival and service time in multiclass queueing network problems without assuming a specific probability distribution, while remaining highly tractable and providing insight into the corresponding optimal...

متن کامل

A Tractable Approach for designing Piecewise Affine Policies in Dynamic Robust Optimization

We consider the problem of designing piecewise affine policies for two-stage adjustable robust linear optimization problems under right hand side uncertainty. It is well known that a piecewise affine policy is optimal although the number of pieces can be exponentially large. A significant challenge in designing a practical piecewise affine policy is constructing good pieces of the uncertainty s...

متن کامل

A Tractable Approach for designing Piecewise A ne Policies in Dynamic Robust Optimization

We consider the problem of designing piecewise a ne policies for two-stage adjustable robust linear optimization problems under right hand side uncertainty. It is well known that a piecewise a ne policy is optimal although the number of pieces can be exponentially large. A significant challenge in designing a practical piecewise a ne policy is constructing good pieces of the uncertainty set. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012